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A b s t r a c t  

The structures observed for many inorganic solids 
are the result of a compromise between the conflic- 
ting requirements of chemical bonding and three- 
dimensional geometry. The ideal chemical structure 
and bond geometry can be predicted using the bond- 
valence model which is developed in some detail. The 
constraints imposed on this geometry when the ideal 
structure is mapped into three-dimensional space 
require, in many cases, that ideal bond lengths be 
strained. Particularly in compounds containing 
bonds of intermediate strength (e.g. the oxides and 
halides of di- and trivalent cations), the relaxation of 
this strain can result in non-stoichiometry, stabili- 
zation of unusual oxidation states, distortion of 
bonding environments and lowering of symmetry. 
The resulting rich crystal chemistry is often associ- 
ated with important physical properties such as 
ferroelectricity and superconductivity. Examples are 
given which show that these properties can, at least 
in some cases, be derived directly from the chemical 
formula by considering the problems of generating a 
structure that conforms to both the chemical and the 
spatial constraints. 

1. I n t r o d u c t i o n  

Although the coordination environment of most 
cations in inorganic solids is isotropic, the environ- 
ment found around Cu 2+ is almost always tetrag- 
onally distorted with two long and four short 
bonds. This distortion is generally attributed to an 
electronic effect arising from the presence of nine d 
electrons in the valence shell. The observation of a 
similar distortion around Ni in La2NiO4 by Mfiller- 
Buschbaum & Lehmann (1978) was a puzzle since 
the environment of Ni 2 +, with only eight d electrons, 
was expected to be isotropic.t  

* Editorial note: This invited paper is one of a series of com- 
prehensive Lead Articles which the Editors invite from time to 
time on subjects considered to be timely for such treatment. 

~" This is true for high-spin Ni, the form usually found in oxides. 
Low-spin Ni does show the Jahn-Teller distortion, but usually in 
the extreme form of square-planar coordination. 

Since 1978 the structures of both La2NiO4 and the 
isostructural La2CuO4 have been extensively studied, 
and the distortion around Ni is now understood to 
be related primarily to steric effects arising from the 
geometric constraints that force some of the N i - -O  
bonds to be compressed and some of the La - -O  
bonds to be stretched. It is the intent of this paper to 
explore the interplay between chemical and steric 
requirements in the formation of inorganic solids, 
requirements which, under suitable conditions, can 
stabilize unlikely stoichiometries and oxidation 
states, and result in unusual physical properties such 
as ferroelectricity and superconductivity. 

The fact that we find it necessary to explain the 
distortions in La2CuO4 and La2NiO4 implies that 
there is a norm (regular octahedral coordination) 
that we would otherwise expect for the environment 
of Cu or Ni. It is one of the striking observations of 
inorganic structural chemistry that most cations do 
have regular, or near regular, coordination spheres 
and we only find it necessary to explain deviations 
from this regularity. The model used in this paper 
starts with the premise that both cation and anion 
coordination spheres should be as regular as possible 
(see §3.2). This premise leads to the prediction of a 
set of 'ideal bond lengths' for a given compound. 
The deviations from these ideal lengths, which we 
recognize as distortions, can be ascribed either to 
electronic effects (i.e. electronic anisotropies, as in 
the case of Cu E +) or to steric effects (as in the case of 
Ni 2+ described above).~ 

Since electronic distortions cannot yet be quanti- 
tatively predicted, the main focus of the paper will be 
on the influence of steric effects. 

To understand how steric effects can influence the 
chemistry of a solid, one needs a model that can 
predict the ideal bonding geometry, that is, the 
geometry that would be expected if steric and elec- 
tronic effects were not present. The traditional 
approach to modelling inorganic structure is to place 

In practice, electronic and steric effects contribute to the 
distortions in both compounds, but only the Cu compound has a 
strong enough electronic anisotropy to produce a distortion in the 
absence of steric stress. 
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the atoms in a three-dimensional array and move 
them to positions that minimize the total energy. 
Since the only configurations accessible in this model 
are those which already exist in three-dimensional 
space, any steric constraints are necessarily built into 
the model and cannot be separated out. This 
approach, while it often yields good predictions of 
structure and physical properties, cannot be used to 
show how steric strain produces the variety of inter- 
esting properties that are observed. For this purpose 
a different model is needed. 

Such a model does exist, and is widely used, in 
organic chemistry. In the chemical-bond model, the 
chemical formula of a molecule is first transformed 
into a 'two-dimensional' structure diagram, or bond 
graph, which represents the molecule schematically 
by a series of bonds connecting the different atoms. 
This graph is then mapped into Euclidian space to 
obtain the three-dimensional structure or conforma- 
tion. The mapping itself involves two steps. In the 
first, ideal bond distances and angles are predicted 
from the two-dimensional graph, using a knowledge 
of the lengths of double and single bonds, modified 
by the known effects of the various substituent 
groups in the molecule. In the second step, this ideal 
geometry is mapped into three dimensions. The map- 
ping is generally not unique, several conformations 
are possible, but the range of conformers is limited 
by steric effects. Combinations of torsion angles that 
would cause different parts of the molecule to over- 
lap are forbidden. In the extreme case of a highly 
overcrowded molecule, a three-dimensional mapping 
may not be possible unless the ideal geometry is 
strained. Strained molecules are less stable and for 
this reason only those with small strains are expected 
to exist. The low stability of strained molecules is a 
factor that must be taken into account in planning a 
chemical synthesis. 

The chemical-bond model used in organic chemis- 
try does not carry over directly into inorganic chem- 
istry, but a version of it, the bond-valence model, 
described in §3, does give good predictions of the 
bonding geometry of those inorganic compounds 
that do not show steric strain. This model has its 
roots in Pauling's (1929) concept of bond strength, 
but it has recently been developed into a simple 
predictive model that provides insight into the inter- 
actions between chemistry and spatial constraint. As 
with the chemical-bond model, the bonding geom- 
etry is predicted from a two-dimensional bond graph 
(see for example Fig. 13a) though using different 
rules. In particular, the bonds are not restricted to 
integral bond orders, but can have any strength 
(bond valence) between 0 and 2, or even higher. The 
mapping into three-dimensional space is also more 
complex, since the structures are infinitely connected 
and usually show translational symmetry, placing 

severe constraints on the permitted conformations. It 
is not surprising, therefore, that steric effects play a 
more important role in inorganic chemistry than they 
do in organic chemistry. 

The importance of steric effects in a given struc- 
ture depends on the strength of the bonds. For 
strong bonds, those with valences (or strengths) 
greater than 1.0 valence units (v.u.), the structure 
adopts the ideal chemical geometry. These bonds are 
stiff and cannot be adapted to the steric constraints. 
If the structure cannot be mapped into three- 
dimensional space without strain, it will not exist. 
This is the regime of complex anions such as sul- 
fates and phosphates, of many of the silicates and 
of most organic molecules. At the other extreme, 
bonds with valences less than 0.2 v.u., exemplified by 
bonds to the alkali metals, are soft and their lengths 
readily adapt to the spatial requirements. In between 
these two regimes is a regime in which both the 
chemically ideal geometry and the steric constraints 
are equally important. The bonds can be strained, 
but the strain energy is relatively large. Compounds 
in this regime attempt to reduce the stress associated 
with this strain by changing either the lengths of 
their bonds, their compositions or the oxidation 
states of their atoms. These are the oxides and 
halides of di- and trivalent cations, the compounds 
that show the widest range of structures and proper- 
ties. It is here that the bond-valence model provides 
chemical insights into an unexpectedly rich field of 
crystal chemistry. 

2. Theories and models of inorganic structure 

2.1. Introduction 

Before giving an account of the bond-valence 
model, it is useful to review some of the traditional 
approaches to bonding in inorganic solids. 

The nineteenth century approach to structural 
chemistry was strictly empirical. As late as 1900, 
there was no independent evidence for the existence 
of either of its two key concepts, the 'atom' or the 
'chemical bond'. In the early years of this century, 
physicists discovered the atom and developed a 
physical theory, quantum mechanics, with which to 
describe its properties. Despite the enormous success 
of quantum mechanics in atomic and subatomic 
physics, its application to chemistry has been 
thwarted by computational complexities. Surpris- 
ingly, even in cases where it has been used, it has not 
led naturally to the concept of a chemical bond. 
There is still no quantum-mechanical explanation for 
why, in many cases, one can ignore all the interac- 
tions between atoms except for those between certain 
nearest neighbours. 
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Consequently, two separate threads run through 
the twentieth-century theory of chemical structure: 
one, using the rigorous physical theory, is frustrated 
by the complexities of real chemical systems, the 
other, developed from the empirical nineteenth- 
century bond model, lacks physical justification. 
Even though both models have been successfully 
used to describe organic molecules, neither has until 
recently been effective in describing inorganic materi- 
als. Therefore, a third approach, the ionic or two- 
body-potential model, was developed. This model 
treats inorganic compounds as composed of ions, 
whose cohesion is provided by Coulomb forces, but 
whose spatial arrangement is determined by the 
repulsions that occur between atoms in contact. 

For a long time none of these models provided 
quantitative prediction of inorganic structure but, in 
recent years, both the ionic model and the bond 
model (in the form of the bond-valence model) have 
become usefully predictive. The bond-valence model 
is the focus of the present article and will be 
developed in §3, but a few comments on the quan- 
tum-mechanical and ionic models are appropriate. 

2.2. Quantum mechanics 

Attempts to apply quantum mechanics to 
inorganic solids have been hindered by the practical 
difficulties of solving the Hamiltonian for infinite 
structures. Most quantum-mechanical calculations in 
inorganic chemistry have been confined to the study 
of small atomic clusters which are then used as 
models for the same cluster in the solid. Quantum- 
mechanical calculations are useful for interpreting 
the local environment of an atom, but they are less 
useful for predicting the way in which these local 
environments are combined to create a complex crys- 
tal structure. In particular they cannot shed light on 
the strains introduced by translational symmetry. In 
spite of these limitations, Bader (1990) has shown 
how atom fragments and bond paths can be uniquely 
identified in the topology of the electron density, and 
has shown, using catastrophe theory, that there is a 
physical basis for the changes that occur in the bond 
graph during a chemical reaction. Although his cal- 
culations have so far been confined to finite clusters, 
they suggest that there is a physical basis for the 
bond model. 

2.3. The ionic model  

In its simplest form the ionic model treats the 
atoms as hard charged spheres held together by 
Coulomb forces. More sophisticated versions treat 
the atoms as soft spheres by using a two-body 
potential that incorporates both an attractive Cou- 

lomb term and a short-range repulsive term. Two 
simple forms of this potential have been proposed by 
Born and his coworkers [Born & Land6 (1918), 
equation (1); Born & Mayer (1932), equation (2)]. 

B 
U O. = A qiqj + - -  (1) 

U ~ = A q i q J +  C e x p ( - - ~ )  (2) 
R o 

The first term in both expressions is a Coulomb 
potential in which A is a dimensional constant, q; 
and qj are the physical charges on the two atoms 
(usually taken to be the same as the formal ionic 
charge) and R o. is the interatomic distance. This term 
may be attractive or repulsive, but the net effect of 
summing this term over all pairs of atoms in the 
crystal (the Madelung energy) is attractive. The sum- 
mation does not converge quickly but various effi- 
cient methods are available for its evaluation (Ewald, 
1921; Bertaut 1952). Hoppe (1975) has shown that, 
in complex crystals, the contribution of a particular 
cation to the Madelung energy (MAPLE, the MAde- 
lung Part of the Lattice Energy) is invariant from 
one compound to another and he has used MAPLE 
calculations to test the correctness of new structure 
determinations. O'Keeffe (1990) has shown that the 
Madelung potential of a site scales as the oxidation 
state of the atom that occupies it. 

The second term in both equations represents the 
repulsion between adjacent atoms resulting from the 
overlap of their electron clouds. More elaborate 
functions than those shown in (1) and (2) are pos- 
sible but the simplicity of these forms, each of which 
involves only two fitted parameters for each type of 
interaction, has made them popular. The exponential 
form (2) is physically more realistic (Pauling, 1927) 
but the power law (1) is computationally simpler. 
Various methods have been proposed for choosing 
the repulsion parameters (B and n, or C and D in the 
above equations), ranging from fitting them to the 
observed elastic constants, to fitting them to the 
potential calculated from an ab initio treatment of 
the two isolated atoms (cf. Catlow, 1977; Catlow, 
Thomas, Parker & Jefferson 1982; Burnham 1990; 
Kramer, Farragher, Van Beest, Van Santen, 1991). 
These potentials are not always transferable between 
different compounds and sometimes corrections are 
needed for the polarization of the atoms, but, when 
used carefully, the ionic model can give good predic- 
tions for the structure and physical properties of 
inorganic materials, even those in which the bonding 
is clearly not ionic. However, the model does not 
allow an explicit treatment of the steric strain 
because it starts with the atoms already occupying 
positions in three-dimensional space and so cannot 
be used to determine the ideal bond lengths. 
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3. The bond-valence model 

3.1. Introduction 

Although the concept of a bond does not occur 
directly in either the quantum mechanical or the 
ionic model, the term 'bond' is often used in the 
description of inorganic structures by analogy with 
its use in organic chemistry. Most chemists would 
use the term to describe the interactions between S 
and its neighbouring O atoms in the sulfate ion, 
SOJ- ,  but would be more reluctant to use it to 
describe the interaction between Na and C1 in NaCI. 
In these contexts it is used descriptively and a precise 
definition is not necessary. 

If bonds are to be used as the basis for a chemical 
model, their properties have to be clearly defined. 
The first step was taken in 1929 when Pauling intro- 
duced the idea of the strength of a bond in the 
second of his five 'principles determining the struc- 
ture of complex ionic crystals': 

'In a stable coordination structure the electric 
charge of each anion tends to compensate the 
strength of the electrostatic valence bonds 
reaching it from the cations at the centers of the 
polyhedra of which it forms a corner; that is, for 
each anion 

Vj = EiVi/Ni = 2 i s i  .' 

Here Vj is the anion valence (formal oxidation state), 
V; the cation valence, N; the cation coordination 
number and si is often referred to as the 'Pauling 
bond strength' of the cation. 

With the accumulation of accurate bond geome- 
tries for a large number of compounds, it was pos- 
sible to demonstrate that Pauling's second rule was 
better obeyed if the relationship between the strength 
and the length of a bond was taken into account 
(Bystr6m & Wilhelmi, 1951; Zachariasen, 1954). 
Donnay & Allman (1970) were able to generalize 
Pauling's 'bond strength' into 'bond valence', a 
property that correlated inversely with bond length. 
The implications of linking Pauling's second rule to 
the bond geometry are the subject of the rest of this 
section and are developed within a formal and rigor- 
ous model. 

3.2. Basic assumptions 

The bond-valence model is based on the following 
assumptions: 

(1) Any chemical structure can be considered as a 
network in which the nodes are atoms and the edges 
are bonds. This expresses the conventional chemical 
picture of a solid in terms of a bond diagram or 
graph and applies equally to organic and inorganic 
compounds. Examples are shown in Figs. 1 l(a) and 
13(a). 

(2) Atoms are characterized by three properties: 
atomic number (Z, defining the chemical element), 
valence (V, defining the oxidation state) and electro- 
negativity (X). V is usually (but not necessarily) an 
integer and obeys the rule that the sum of all atomic 
valences in the crystal is zero. It is determined, in 
part, by the column in the periodic table in which the 
atom lies and can be thought of as the number of 
electrons that the atom contributes to chemical 
bonding. X is a number related to the Lewis acid 
strength defined in §3.5.2. V may be positive or 
negative. Atoms with positive valence are called 
cations, those with negative valence are called anions. 
These are labels of convenience. There is nothing in 
the bond-valence model that implies the physical 
nature of the bonding. In §3.8 it is shown that the 
bond-valence model is consistent with both ionic and 
covalent views of bonding. 

(3) Bonds occur only between neighbouring atoms 
whose valences have opposite sign. This restricts the 
model to the acid-base bonds typically found in 
inorganic materials. A bond network with this 
property is said to have a bipartite graph in which all 
closed paths in the graph have an even number of 
bonds (edges). The graph is also directed, since the 
bonds are assumed to be directed from the anions to 
the cations. Although this assumption appears to be 
quite restrictive, it is obeyed by the majority of 
inorganic compounds and, in any case, §3.3 shows 
that a non-bipartite bond graph can often be conver- 
ted into bipartite one. 

(4) Bonds are characterized by their bond valences 
(s) and their bond lengths (R). Bond valence is 
rigorously defined in assumption (5) below, but it is 
qualitatively the same as bond strength or bond 
number and can be thought of as the number of 
electron pairs that are associated with the bond. 
Bond length is defined as the distance between atomic 
nuclei which, for most atoms, lie at the centers of 
their electron cores. 

(5) Bond valences (s) are related to atomic valences 
(V) through the two network equations: 

Y~ySij = Vi (3) 

ZloopS0" = 0 (4) 

where the subscripts i and j refer to different atoms. 
These equations, which are similar to the Kirchhoff 
equations used to solve electrical networks, uniquely 
define the bond valences for a given graph. There are 
several approaches to solving these equations which 
will not be discussed here. Interested readers are 
referred to papers by Brown (1977), O'Keeffe (1989) 
and Rutherford (1990). 

Equation (3), referred to as the valence-sum rule, 
states that the sum of the bond valences around an 
atom is equal to its atomic valence. Equation (4), 



I. D. BROWN 557 

which states that the sum of the bond valences 
around any loop (having regard to the direction of 
the bonds) is zero, is the mathematical condition that 
results in the most symmetric distribution of atomic 
valence among the bonds (Brown, 1991c). This equa- 
tion is therefore referred to as the equal-valence rule. 
The two rules together can be summarized by the 
statement: Each atom shares its valence as equally as 
possible among the bonds that it forms. 

The bond valences predicted by these equations 
are referred to as simple bond valences and give 
correct predictions of bonding geometry (see §3.4) 
for the majority of inorganic compounds. Structures 
in which the bonding is distorted by electronic 
effects, such as the presence of lone-pair electrons or 
the Jahn-Teller distortions found around Cu 2+, 
clearly do not obey the equal-valence rule. They are 
discussed in §3.7. Simple bond valences are referred 
to as ideal bond valences after they have been correc- 
ted for electronic effects. Both valence rules may also 
be violated in the presence of steric constraints as 
discussed in ~4. 

3.3. Structures with non-bipartite graphs 

Assumption (3) restricts the bond-valence model 
to bipartite graphs, that is, graphs in which bonds 
are found only between cations and anions. The 
model runs into inconsistencies if bonds occur 
between two cations or between two anions. In 
practice this restriction can be circumvented in a 
couple of ways. One is to treat the two-bonded 
cations (e.g. Hg22+) or anions (e.g. 022-) as a single 
node, the only difficulty being how to distribute the 
atomic valence between the two atoms. An example 
is given by the trifluoroacetate ion (Fig. la), whose 
two C atoms, unlike those in the acetate ion (Fig. 
l b), are both formally cations and must be treated as 
a single C 6+ node. 

An alternative approach is to split an atom into 
two nodes of opposite sign, keeping the total valence 

• O- F------; 

~ 0" F - - - - ;  
(o) 

.o\ 
• / C  °, 

4 O- 

H~4 / 
C- , H ,  

(b) 

O -  i_ \ /  / 
; Cu" • N" 

I \  
(c) 

\ /  /o- • 
,Cu%-- - -N l - -  . . . .  N2" 

/ \  
(d) 

Fig. 1. Examples of  the treatment of non-bipartite graphs. (a) In 
the trifluoroacetate ion the two C atoms are treated as a single 
node. (b) The acetate ion has a bipartite graph. (c) Cu(NOE)~- 
ion with cation-cation bonds. (d) Treatment of  Cu(NO2)~- 
splitting N into two nodes. 

of the two nodes the same as that of the atom they 
replace. Thus in Cu(NO2)64- both the Cu and the N 
bonded to it are formally cations (Fig. l c). The N 3 + 
can be split into two nodes, N1 a- and N2 (3+a)+ 
where a depends on the valence of the fictitious bond 
between the two nodes N1 and N2 and can have, 
therefore, any convenient value (Fig. l d). This com- 
plex could also have been treated by replacing 
CuN 2°+ by a single node, but useful information 
about the C u - - N  bond would then have been lost. 

3.4. Correlation between bond valence and physical 
properties 

The assumptions of §3.2 lead to a formal descrip- 
tion of chemical bonding in terms of atomic valence 
and simple bond valence, but the usefulness of the 
description lies in the relationships that exist between 
bond valences and physical properties. The rela- 
tionship between bond valence (s) and bond length 
(R) is particularly well determined, in part because of 
the large number of accurate measurements of bond 
length that are available. 

The relationship, a typical example of which is 
given in Fig. 2, is monotonic, and over the small 
range in which most bonds are found, it can be 
approximated by either (5) or (6): 

so. = exp B ' 

s o = ( R j R o )  -N' (6) 

Here Ro, B and N'  are fitted constants, Ro being the 
length of a bond of unit valence. Values for these 
constants have been determined by many workers, 
by requiring that the values of s o obey the valence- 
sum rule (3) in many different compounds. Brown & 
Altermatt (1985) report values of Ro for most of the 
common bonds and have shown that, for most 
bonds, B can be set equal to 0.37A. Brese & 
O'Keeffe (1991) have extrapolated these results to 
unknown and less frequently found bonds and they 
have also shown that the values of Ro can be 
expressed as the sum of atomic radii with a small 
correction that depends on the difference in electro- 
negativity, g (O'Keeffe & Brese, 1991). An important 
consequence of the bond-length-bond-valence corre- 
lation is that it is possible to predict bond lengths 
directly from the bond graph using the network 
equations (3) and (4) together with (5) or (6). 

Experimental bond valences, s', can be calculated 
from observed bond lengths. The sums of experimen- 
tal valences will not, in general, be exactly equal to 
the atomic valence and a measure of the discrepancy 
is given by d~ in (7). 

dt = V i -  Y js~ (7) 
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A convenient measure of the agreement over the 
whole structure is given by the index, R1, which is 
the root-mean-square average of the d; values: 

R1 =(d~) ''2. (8) 

Experimental uncertainty in the determination of 
bond lengths can lead to values as large as 0.1 v.u. 
for these indices, depending on the accuracy of the 
bond lengths. Larger values of d; and R1 are indica- 
tive of strained bonds which can lead to instabilities 
in the crystal as discussed in ~4. 

The correlation between bond valence and bond 
length is well attested, but bond valence also corre- 
lates with other bond properties. A correlation with 
the coefficient of thermal expansion has been demon- 
strated (Khan, 1976; Hazen & Prewitt, 1977; Bob- 
inski & Ziotkowski, 1991). Force constants and bond 
energies also increase with bond valence but a quan- 
titative correlation is difficult to determine because 
there are difficulties in defining, and determining, 
bond force constants and bond energies (Ziotkowski 
& Dziembaj, 1985). 

3.5. Some theorems 

3.5.1. The distortion theorem. The presence of 
strain in a structure can lead to a distorted cation 
environment as shown by the corollaries to the fol- 
lowing theorem. 

Any deviation of  the valences of  the bonds formed 
by an atom from their average valence will increase the 
average valence providing the average bond length 
remains constant. 

An alternative statement is: 
Any deviation of  the lengths of  the bonds formed by 

an atom from their average length will increase the 
average length providing the average bond valence 
remains constant. 

This theorem derives from the concave shape of 
the bond-valence-bond-length correlation (see Fig. 
2). Increasing the valence of one O---H bond and 
decreasing the valence of the other by the same 
amount increases the longer bond by more than it 
decreases the shorter, thus increasing the average 
bond length. This theorem has three important 
corollaries: (1) If an atom is placed in a cavity that is 
too large, so that the average length of its bonds is 
too long to satisfy the valence-sum rule, the valence 
sum can be increased by making some bonds longer 
and others shorter, e.g., by allowing the atom to 
move off center within the cavity. Where such a 
distortion occurs, the equal-valence rule is clearly not 
obeyed, but the extent of the deviation can be pre- 
dicted if the cavity size is known. (2) Since the 
application of hydrostatic pressure reduces the aver- 
age bond length, pressure will tend to make distorted 
atomic environments more symmetric. Pressure has 
the effect of reducing the space available to an atom 
and so, for a given atom, will remove distortions. (3) 
Since a symmetric coordination environment can be 
thought of as a highly distorted form of an environ- 
ment with a higher coordination number, pressure 
will stabilize higher coordination numbers. An 
example is provided by the pressure-induced phase 
transition of the alkali halide crystals from the NaC1 
to the CsCI structure. The increase in coordination 
number from six to eight provides relief from the 
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Fig. 2. Bond valence as a function of bond length for bonds 

between H and O [reprinted with permission from Brown 
(1989), © 1989 American Chemical Society]. 
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Fig. 3. Correlation between electronegativity and Lewis acid 
strength [reprinted with permission from Brown & Skowron 
(1990), © 1990 American Chemical Society]. Circles are main- 
group elements in their highest oxidation state. + and x are 
the same elements in lower oxidation states. 
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stress. The average of the shortest 6 + 2 distances of 
the NaCI structure is larger than the average of the 
eight shortest distances of the CsCI structure, even 
though the eight bonds of the CsCI form are longer 
than the six shortest distances of the NaCI form. 

3.5.2. The valence-matching principle. Stable com- 
pounds will tend to form only between cations whose 
Lewis acid strength is approximately equal to the 
Lewis base strength of the anion. This theorem 
follows directly from the definition of Lewis acid 
strength as the expectation value of the valence of a 
bond formed by a cation, and of the Lewis base 
strength as the expectation value of the valence of a 
bond formed by an anion. Since the same bond links 
the two, the expectation values should be similar. 

The Lewis acid strength is determined by noting 
that coordination number (n) is a characteristic 
property of cations, particularly those in high oxi- 
dation states. Representing the characteristic coordi- 
nation number by the average coordination number, 
(n), found in a large number of stable solids, we can 
use the valence-sum rule to calculate the average 
valence, (s), of the bonds formed by a given cation as 
shown in (9) (Brown, 1988b). 

(s) = V/(n) (9) 

According to the equal-valence rule, (s) will be close 
to the actual valence of each of the bonds formed by 
the cation. The average valence of a cation, (s), is 
then the Lewis acid strength, Sa (10), so called 
because it correlates with electronegativity (Fig. 3) 
(Brown & Skowron, 1990). 

so = <s)= v/<,),  v > 0  (10) 

Values of the Lewis acid strengths of some common 
cations are given in Table 1. 

A corresponding equation, (11), can be used to 
define a Lewis base strength or the expectation value 
of the bond valence, Sh, for anions (Table 2). 

= (s) = V/(n), v < 0  (11) 

For complex oxyanions, (n) can be approximated 
by assuming that terminal O atoms are four- 
coordinate and bridging O atoms are three- 
coordinate. In practice anions form bonds with a 
wider range of valences than cations. It is therefore 
convenient to call Sb the normal Lewis base strength 
and to define a maximum base strength, S,,,, accord- 
ing to (12) where 

S m - -  V / n m i  n ( 1 2 )  

and nmin is the smallest possible coordination number 
of the O atom, normally 2 but occasionally 1 or 3. 
The calculation of the normal and maximum base 
strength of water is illustrated in Fig. 4. 

The valence-matching principle is illustrated by 
Dent-Glasser's (1979) observation that the alkali 

Table 1. Some Lewis acid strengths (from Brown, 
1988b) 

Li Be B C N O F 
0.205 0.501 0.87 1.35 1.67 
N a  M g  AI Si P S CI 
0.156 0.334 0.57 1.00 1.25 1.5 1.75 
K Ca  G a  Ge  As  Se Br 
0.126 0.274 0.65 0.89 I. 13 1.5 
Rb  Sr In Sn Sb Te I 

0.120 0.233 0.50 0.68 0.83 1.20 1.2 
Cs  Ba TI Pb Bi~ * 
0.113 0.195 0.49 0.70 0.48 

Sc 3. Ti 4 + VS* Cr6~ M n  3' Fe 3+ Co  s` 

0.49 0.67 1.08 1.50 0.52 0.53 0.51 

M n  2' Fe 2' Co  2 * Ni 2 + Cu  2 , Z n  2 + 

0.34 0.34 0.35 0.34 0.39 0.40 

Table 2. Some Lewis base strengths 

sh s,, Anion 
0.50 2.00 02- 
0.33 1.00 sio~- . BO 3" 
0.25 0.75 PO]- 
0.22 0.67 COl , HPO ] 
0.21 1.00 F- 
0.17 0.50 SO ] , CI , H2PO4- 
0.17 0.34 H20 
0.11 0.33 NO~ 
0.09 0.50 Br 
0.08 0.25 ClOg, BF4 
0.06 0.50 I- 

metals tend not to form orthosilicates, and transition 
metals tend not to form highly polymerized silicates. 
Fig. 5 shows that the low base strength of the 
polymerized silicate ions matches well the low acid 
strength of the alkali metals, whereas the more 
strongly acid transition metals bond readily to the 
more strongly basic orthosilicate ion. The com- 
pounds that are not observed are those that are 
poorly matched. 

Hawthorne (1985) has developed this idea to 
model the geogenesis of minerals in rocks. He 
assumes that the silicate framework that forms is the 
one whose Lewis base strength best matches the acid 
strengths of the available cations. 

0"17 

/ o  , o,,, 
~H ~ H" 

(a) (b) 
Fig. 4. The base strength of water. (a) The normal Lewis base 

strength is 0.17 v.u. (b) The maximum Lewis base strength is 
0.34 v.u. 
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3.6. A useful technique - the valence-sum map 

A special valence technique was developed by 
Waltersson (1978) in order to locate the Li atoms in 
lithium tungstates. He calculated the valence sum 
that a Li atom would have if placed at any arbitrary 
point in the crystal. Any position where this value is 
1.0 v.u., was a possible site for Li. If the value were 
greater than 1.0 v.u., the Li would be too close to an 
O atom and if it were less than 1.0, the Li would be 
in a cavity where it would form bonds that would be 
too long. Moving the Li atom systematically through 
all points in the crystal gave a valence-sum map 
which revealed all the possible sites for Li. 

In addition to finding the location of a particular 
type of atom, the valence-sum map reveals any 
unoccupied cavities in the structure including paths 
along which the atoms might easily diffuse. It is 
particularly useful for finding sites for interstitial 
atoms, making it a valuable tool for examining 
transport properties (Brown, 1988a). 

An instructive way of displaying this map is to 
plot the valence-sum density map given by (13) 
where n is a number in the range 8 to 16. 

(Z ' s°~  -" (13) 
f = \  v i ]  

This map has sharp peaks at minima in the valence 
map, i.e. at the positions of cavities in the structure, 
and falls off rapidly as the valence sum increases. 
The effect is to simulate an atomic density map 

O) Lo 
o o 
.¢ ¢'J 0 ._e,~_ u~ 

~0 U~ Or) UOU3 0 

o • o o 

/ / / :  o 

I I I I I 

01 0-2 0 3  0 4 0-5 
Base S t r e n g t h  

Fig. 5. Lewis acid strengths and Lewis base strengths of silicates 
illustrating the valence matching principle. TM = transition 
metal. The central line represents a perfect match. Circles 
indicate known stable silicates (Dent-Glasser, 1979). 

around those atoms that fit snugly into the structure. 
Ideal atom sites have f equal to 1.0. Fig. 6 shows 
examples of Mg valence-sum density maps for 
forsterite (Mg2SiO4, Wenk & Raymond, 1973) 
plotted with n = 16 and n -- 8. 

Fig. 6(a) shows that there are two large cavities 
(indicated by shading). One is occupied by Mg(2) 
and the other is empty. In addition, at the origin is 
one well-matched site occupied by Mg(1) that correc- 
tly reflects the anisotropic motion. Setting n to 8 
gives the map shown in Fig. 6(b). This gives an 
impression of the Mg positions expected at high 
temperature and shows the path along which the 
Mg(l) can diffuse using the empty site. The Mg(2) 
atom does not diffuse, nor does the center of the 
large cavity it occupies provide good bonding as the 
bonds are too long. The Mg(2) atom moves off 
center in its cavity by 0.08 A, introducing a small 
steric distortion into the cation environment of the 
kind discussed in ~ .  

3.7. Electronic distortions 

The equal-valence rule is often violated in cases 
where the cation environment is distorted by aniso- 
tropic electronic effects. The causes of the electronic 
distortions lie outside the scope of the bond-valence 
model but are well described in references such as 
Burdett (1980). In considering their influence on 
structure, electronic effects may usefully be classified 
according to the inherent strength of the distortion. 
Strong distortions, such as the lone-pair distortions 
found around As 3÷ or the Jahn-Teller distortion 
around Cu 2+, occur in all compounds regardless of 
the context in which the cation finds itself. All that 
needs to be determined is the extent and direction of 

! 

0 
@ 

C ~c 

b/4 b/4 
! 

0 ® 
! | • [ 7 ]  • 

( a )  (b) 

Fig. 6. Valence-sum density map for Mg atoms in forsterite 
calculated using equation (13) [reprinted with permission from 
Brown (1989), © 1989 American Chemical Society]. x indicates 
the position of  Mg atoms. Contours are at intervals of  0.33. (a) 
Calculated with n = 16 giving the impression of Mg sites at 
room temperature. The shaded regions have values greater than 
1.0 and represent cavities too large for Mg. (b) Calculated with 
n = 8 giving the impression of the sites at high temperature and 
revealing a diffusion path along the c axis. 
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the distortion, the latter necessarily being determined 
by the surrounding bond network. On the other 
hand, weak electronic distortions, such as those 
found around T1 + and Ti 4+, will only occur when 
the distortion is also predicted by the bond-network 
equations, (3) and (4), or required by steric con- 
straints. For example, the size of the distortion 
around T1 + is determined by the Lewis base 
strengths of its ligands. If the bases are strong as in 
T13BO3 [Sb(BO3+)=0.33v.u.]  the bonds will be 
strong (0.33v.u.) and the coordination number 
( =  V/Sb) small (3), forcing an sp 3 configuration with 
the lone pair occupying one of the orbitals. In this 
case the bonding will be strongly distorted. If the 
bases are weak as in TINO3 [Sb(NO3 )= 0.11 v.u.], 
the bonds will be weak and the coordination number 
large (-'- 10) leaving no room for the lone pair. The 
result is a symmetric bonding environment for TI + 
(Brown, 1988b). Ti n+ is usually found in regular 
octahedral coordination, but can be easily deformed 
by steric effects as in BaTiO3 (see §4.3). In such cases, 
electronic effects help to stabilize distortions pro- 
duced in other ways. 

Cations that show electronic distortions are either 
low-oxidation state main-group elements or transi- 
tion metals. The former constitute a well defined 
group whose cations form both strong and weak 
bonds. The properties of the strong bonds are well 
described by the valence shell electron pair repulsion 
(VSEPR) model (Gillespie & Hargittai, 1991) in 
which coordination sites not occupied by strong 
bonds are assumed to be occupied by lone electron 
pairs. The weak (or secondary) bonds (Alcock, 1972) 
are found close to, but not directly along, the direc- 
tions occupied by the lone pairs. The distortion can 
be described as the cation moving off center in its 
coordination sphere and, according to the distortion 
theorem (§3.5.1), this will increase the average length 
of the bonds. As shown elsewhere (Brown, 1991b), it 
is this effect that makes it possible to introduce the 
small Bi 3+ and Pb 2+ ions into the superconductors 
Bi2Sr2CuO6 (Michel, Hervieu, Borel, Grandin, Des- 
lendes, Provost & Raveau, 1987) and Pb2Sr2(Y,Ca)- 
Cu308 (Marezio, Santoro, Capponi, Hewat, Cava & 
Beech, 1990). 

Compared to the main-group elements, the elec- 
tronic distortions of the transition elements are less 
systematic. The majority of transition metals have 
regular coordination and show no electronic distor- 
tions, but among those that do are V in higher 
oxidation states which typically forms one very 
strong bond to oxygen to give the vanadyl ion 
(VOW+). Ti 3÷ and U behave somewhat similarly. 
Octahedrally coordinated Cu z + almost always shows 
a tetragonal distortion that is attributed to the Jahn-  
Teller effect, the distortion removing the degeneracy 
in a partially occupied d 9 state (Dunitz & Orgel, 

1957). The coinage metals in oxidation state 1 + and 
Hg 2÷ tend to form two strong linear bonds. The 
elements in the lower part of groups 11 and 12 are 
the classic 'soft' cations (Pearson, 1973), forming 
compounds in which the polarizability of the ions 
allows easy formation of electron-pair bonds with 
both 'soft' anions (e.g. S 2- and I - )  and 'soft' cations 
(as in Hg22+). 

In most cases electronic distortions violate the 
equal-valence rule but not the valence-sum rule. At 
best, such distortions are only qualitatively under- 
stood and it is not yet possible to predict quanti- 
tatively when and how they will occur. For this 
reason, electronically distorted structures will not be 
explicitly considered further in this work, though it 
should be kept in mind that electronic and steric 
effects often work symbiotically to stabilize distorted 
cation environments. 

3.8. Physical interpretations of bond valences 

Although bond valence, being an empirical con- 
cept, is completely defined by the assumptions made 
in §3.2, it is useful to ask how it relates to the more 
physical and traditional ideas of bonding. If atomic 
valence is defined to be equal to formal oxidation 
state (which is the most useful, but not the only 
possible, definition) it counts the number of valence 
electrons that an atom uses in bonding. Several 
physical interpretations are possible. 

In the ionic limit, the atomic valence is the formal 
charge on an atom, the more electronegative atoms 
being the anions and the more electropositive the 
cations. The valence electrons of the cations are 
formally transferred to the anions where they form 
electron pairs with anion valence electrons to give 
closed-shell ions. In real compounds this transfer is 
never complete, the valence electron pairs being pol- 
arized back towards the cation. The bond valence is a 
simple extension of the electron-counting rules and 
gives a formal count of the number of electron pairs 
associated with the bonding region between the two 
ions. It does not itself indicate the degree of polari- 
zation of the electron pairs into the bonding region, 
and hence does not directly measure the covalency or 
the ionicity of a bond (but see the discussion below). 

Because atomic valences are most easily inter- 
preted as ionic charges, the bond-valence model has 
been perceived as a model applicable only to ionic 
solids. But bond valence can also be calculated start- 
ing with a covalent model. The simplest such model 
is the Lewis electron-pair-bond model in which 
bonds are represented as either electron-pair bonds 
(covalent) or electrostatic interactions (ionic). There 
are usually several Lewis structures for a given com- 
pound, and averaging over all them gives the number 
of electron pairs that correspond to a given bond, a 
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quantity that Boisson, Gibbs & Zhang (1988) call the 
resonance bond number. These are found to be close, 
or identical, to bond valences defined by (3) and (4) 
(Rutherford, 1991). Thus one gets the same value 
whether one starts from an ionic or covalent model. 
However, because of the correlation between Lewis 
acid strength and electronegativity (Brown & Sko- 
wron, 1990), the strong bonds formed by strong 
Lewis acids will tend to be more covalent, and the 
weak bonds formed by weak Lewis acids will tend to 
be more ionic. Bond valence, therefore, not only 
measures the number of electrons associated with a 
bond, but also, in practice, the degree of covalency 
(Brown & Shannon, 1973). 

The bond-valence model can be compared with the 
two-atom-potential ionic model described in §2.3. 
The total binding energy in this model is given by 
summing the interatomic potentials (1) over all pairs 
of atoms. Consider first the Coulomb term. Its sum- 
mation can be divided into two parts, an outer sum 
over the index i, and an inner sum overj. Consider a 
particular atom i. The contribution, U~, of this atom 
to the total sum (the Madelung energy) is propor- 
tional to what Hoppe (1975) calls the MAPLE value 
(MAdelung Part of the Lattice Energy) and is given 
by (14). 

U~= Y.~(Aq~q/Ro. ) (14) 

This sum can be further divided into an infinite 
sequence of sums over the first, second, third, etc. 
neighbours. The contribution of each shell will have 
roughly the same magnitude as, but opposite sign to, 
the contributions of its two neighbouring shells. 
Thus the contribution of each shell will largely cancel 
half the contribution of the shell on either side, 
leaving U~ determined primarily by the contribution 
of the first coordination shell. The similarity between 
(6) and (14) with j restricted to nearest neighbours, 
suggests that U~ is related to the bond-valence sum 
around atom i, and that the constancy that Hoppe 
(1975) finds for the MAPLE value of a given cation 
in different structures is related to the valence-sum 
rule. O'Keeffe (1990) has also shown that the Made- 
lung site potential, which is closely related to the 
MAPLE value, is, like the valence sum, proportional 
to the atomic valence. 

At equilibrium, the derivative of the total energy 
with respect to Rij must be zero. Using the Born- 
Land6 potential (1), the equilibrium value of R~j is 
given by (15). 

2Aq ,q /UB= R~ (N-I) (15) 

A is a constant and if, following the arguments given 
by Brown & Shannon (1973), we assume B is propor- 
tional to the coordination number, n -- KB, then (15) 
can be rewritten as (16). 

qJn = (1/2AKqj)R~ Co- ') (16) 

But qi/n is equal to VJn which is just the expectation 
value of the bond valence (10) and, by comparison 
with (6), the bond-valence exponent, N' ,  should be 
related to the Born exponent (N) by (17) as observed 
(Brown & Shannon, 1973). 

N ' =  N -  1. (17) 

In a similar way (5) can be related to either the 
Born-Mayer (2) (Jansen, Chandran & Block, 1991) 
or the Morse potential (Bfirgi & Dunitz, 1987). Thus 
the form of the bond-valence curve is related to the 
form of the interatomic repulsion. All these analyti- 
cal expressions for the repulsive potential are 
approximations valid over the short ranges of R;j 
that are usually observed. Where the range is wider 
(e.g., for H - - O  bonds) the true repulsion between 
two atoms is more accurately represented by a bond- 
length-bond-valence graph such as that shown in 
Fig. 2. 

Bond valence can also be interpreted in terms of 
the matching of atomic surfaces. Bader (1990) has 
shown that the topology of the electron density can 
be used to divide space into unique atomic fragments 
that have special quantum-mechanical properties. 
The electron density found within a particular 
atomic fragment changes very little from one com- 
pound to another so that the problem of building a 
structure is the problem of assembling the atomic 
fragments. When the atoms are brought into contact, 
changes must be made at their boundaries to ensure 
the continuity of the electron density. Stable bonds 
will be formed when the electron densities at the 
bonding surfaces are already similar and only small 
adjustments are needed (cf. Miedema, Boom & 
De Boer, 1975). If one assumes that the Lewis acid 
and base strengths are related to the electron density 
at the surface of the atomic fragments, the valence- 
matching principle follows. 

4. Steric effects 

4.1. Introduction 

The first corollary to the distortion theorem given 
in §3.5.1 predicts that the equal-valence rule will not 
be obeyed when an atom, usually a cation, is found 
in a cavity that is too large for it. Either the cavity 
will collapse around the atom or the atom will move 
off center. One would not expect this to be a 
common situation, since most compounds will select 
structures in which both of the network equations 
can be satisfied, but there are situations where the 
structure cannot exist without strain and where such 
distortion cannot be avoided. There are two princi- 
pal causes of steric effects, local and non-local. Local 
steric effects arise when atoms are forced by local 
bonding requirements into contacts that are too 
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close. These are the steric effects found in organic 
molecules. Non-local steric effects arise from the 
constraints imposed by crystal symmetry, particu- 
larly translational symmetry which requires that all 
parts of a structure be commensurate. If the non- 
local steric effects produce too large a strain, the 
symmetry may be lowered or the structure may 
become incommensurate. 

4.2. Local steric effects: the hydrogen bond 

One of the most important and idiosyncratic link- 
ages in chemistry is the hydrogen bond. The charac- 
teristic distortion found around the H atom is a local 
steric effect caused by hydrogen being too small for 
2-coordination and too large for 1-coordination. 
Consider an H atom bonded to a single O atom. In a 
solid oxide the O atoms will be approximately close 
packed so that each O atom, including that bonded 
to H, will have several O neighbours about 3.2 A 
away. Geometry requires that at least one of these 
must lie between 2.2 and 2.5 A from the H atom as 
shown in Fig. 7(a). 

An O atom at this distance from H forms a bond 
whose strength is between 0.08 and 0.05 v.u. (Fig. 2). 
The H atom cannot therefore be singly coordinated; 
there will always be at least one additional atom 
within bonding distance. According to the equal- 
valence rule, if the H atom is to be doubly coordi- 
nated, each bond should each have a valence of 
0.5v.u. corresponding to an H - - O  distance of 
1.21 A (Fig. 7b). This requires that the O atoms be 
only 2 .42A apart, a distance at which they are 
strongly overlapping. Separating the O atoms until 
they are just in contact (3.2 A), gives two symmetri- 
cal O---H bonds that are too long (1.6A) and a 
valence sum at H that is too small (2 × 0.25 = 
0.50 v.u.). According to the distortion theorem, the 
valence sums at H can be increased if the H atom 
goes off center, forming one long and one short 
O---H bond. With bonds of length 1.0 and 2.2 A (0.9 
and 0.1 v.u.) the O - - O  distance would be 3.2 A and 
the valence sum at H would be 1.0 v.u. In practice, 

(a) (b) (c) (d) 
Fig. 7. Configurations of hydrogen bonds. The O atoms are shown 

as circles corresponding to a non-bonding distance of 3.2 A. 
(a) A singly coordinated H atom is still within bonding range of 
other O atoms (H---O = 2.2 to 2.5/~). (b) A symmetrical hydro- 
gen bond causes the O atoms to overlap (O---O = 2.42 A). (c) In 
a normal hydrogen bond the H atom is off-center (O----O = 
2.76 A). (d) Weak hydrogen bonds are usually bent. 

the O atoms are not hard spheres and two O atoms 
bonded to a common H atom will be brought closer 
together than 3.2 A. Experimentally, it is found that 
equilibrium is reached when the O---H distances are 
0.95 and 1.81 A (0.83 and 0.17v.u., Fig. 7c), the 
distances found in ice where the hydrogen bond is 
unperturbed by the presence of other elements 
(Brown, 1976a). 

The distortion occurs in such a way as to place the 
H atom closer to the stronger base, preferably a base 
with Sb-----0.83 v.u. If the donor O has a base 
strength much less than 0.83 v.u. [e.g. H20 when H + 
is added to form H3 O+, Sm(O ) = 0.4 v.u.], or if the 
acceptor O has a base strength much greater than 
0.17 v.u. (e.g. PO43-, Sb = 0.25 v.u.), the H atom can 
be forced to form a more symmetric bond. In the 
monohydrated hydronium ion, H 2 0 - - H - - O H 2  +, the 
bond is completely symmetrical (Kjfillman & 
Olovsson, 1972). On the other hand, if the acceptor 
has a base strength much less than 0.17 v.u. (e.g. 
C104,  Sb=0 .08v .u . ) ,  the hydrogen bond will 
become weaker and more asymmetric. In this case, 
the hydrogen bond is free to bend and the O--H.- .O 
angle is found to deviate from 180 ° in such a way as 
to keep the O atoms at their effective contact dis- 
tance as shown in Fig. 7(d) (Brown, 1976a,b). 

Hydrogen bonds between other bases ( F - ,  CI- ,  
Br - ,  S 2-, N 3-, C a-) behave in a similar way. 
Fluorine, being smaller than O, is able to form 
symmetric hydrogen bonds more readily (as, e.g., in 
the F H F -  ion), but C- -H. . .X  hydrogen bonds are 
always highly asymmetric. In many molecules there 
is little or no excess valence (charge) associated with 
an H atom attached to C, but in a neutral molecule 
with an exposed Lewis base (e.g. 0 in CH3CHO), 
the valence-sum rule requires that, if the O atom acts 
as a Lewis base, the H atoms must act as Lewis acids 
with the same total valence. Normally, the acid 
strength of H is small (less than 0.03 v.u.) but suffi- 
cient to produce a measurable interaction of the 
C - - H  group with a base (H..-O = 2.7 A). In some 
cases, e.g. CH3C(OH)2 +, the Lewis acid strengths of 
the methyl H atoms may be as large as 0.1 v.u. In 
such cases the C--H. . -O bonds do not become 
stronger; the bonds individually remain weak but 
increase in number to three or four (Brown, 1980). 

Because of its small size, H + always finds itself in 
a cavity that is too large and so, except in the most 
unusual circumstances, it forms an asymmetric link 
between two or more anions. Clearly such distortions 
are stabilized if these anions have base strengths 
close to the expected valences of the bonds. 

4.3. Non-local steric effects: distortions in perovskites 

Non-local steric effects arise from geometric con- 
straints associated with symmetry, particularly trans- 
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lational symmetry. The cubic perovskites, AB03, 
contain two kinds of bond, A- -O  and B--O as 
shown in Fig. 8(a). 

Since the A atoms are 12-coordinate, their bonds 
have valences V,/12. The smaller B atoms usually 
have a larger atomic valence (VB), are 6-coordinate, 
and have bonds of valence VJ6. The B--O bonds 
are therefore much stronger than the A- -O  bonds. 
The structure can usefully be thought of as a 
strongly bonded framework of face-sharing cubes of 
c o m p o s i t i o n  8 0 3  containing weakly bonded A atoms 
in the cube centers. In BaTiO3 the network equations 
predict that the Ba---O ( ,4--0)  bond lengths should 
be 2.942 A (s = 0.17 v.u.) and the Ti---O (B--O) 
bond lengths 1.965 A (s=0 .67  v.u.). The Ba--O 
bonds require a lattice spacing of a = 2 ~'2(Ba-O) = 
4.161 A while the Ti---O bonds require a lattice 
spacing of a = 2(Ti---O) = 3.930/k. If the real struc- 
ture has a lattice spacing equal to the average of 
these, 4.046 A, the Ba---O bonds must be compressed 
and the Ti - -O bonds stretched to yield a structure 
which violates the valence-sum rule, having a strain 
index, R1 [equation (8)] equal to 0.35 v.u. Ti finds 
itself in a cavity that is too large and tends to move 
off center in accordance with the first corollary of the 
distortion theorem (Fig. 8b). This distortion involves 
the loss of the center of symmetry and results in 
BaTiO3 being a technologically important ferroelec- 
tric material. Other perovskites such as PrFeO3 
(Marezio, Remeika & Dernier, 1970) have the B (Fe) 
atom too large and the ,4 (Pr) atom too small. In 
such compounds it is the environment of the A atom 
that distorts. The B O  3 framework twists, shortening 
some ,4---0 bonds and lengthening others while 
keeping the average , 4 - - 0  distance constant (Fig. 
8c). It is always the environment of the stretched 
atom that distorts, increasing its bond-valence sums 
in accordance with the distortion theorem. 

The perovskite structure is the first member of a 
series of related compounds which includes the 

copper oxide superconductors. They are built from 
layers of composition AO and BO2, the perovskite 
structure itself being produced by a simple alter- 
nation. In order to form crystals, the layers must be 
commensurate, that is, the ratio of the A- -O  to 
B---O bond lengths within the layers is constrained 
by the crystal structure to be equal to 21/2 . However, 
the ratio of the ideal bond lengths predicted by the 
network equations will, in general, be different. If the 
structure is to form at all, it will be strained, with one 
type of layer being stretched, the other compressed. 
Several mechanisms are available for relieving the 
stresses that produce this strain (Brown, 1991b). 

(1) The first mechanism is always to relax the 
interlayer bonds in order to minimize the deviations 
from the valence-sum rule. 

(2) The low valence sums that occur around 
cations in stretched layers can be increased by dis- 
torting their environment, a mechanism that is 
favoured if it can be stabilized by an electronic 
distortion of the cation's valence shell ({}3.7). Fig. 9 
shows how the lengths of Bi 3 + - O  bonds, and the 
corresponding lattice spacing of a BiO layer, change 
as Bi undergoes a trigonal off-center displacement in 
an octahedral coordination environment. 

(3) In cases where the cations can exist in more 
than one oxidation state, the stress may be sufficient 
to move electrons from the compressed to the 
stretched cations stabilizing an otherwise unexpected 
oxidation state. Fig. 10 shows the changes expected 
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Fig. 8. Perovskite structures. The open circles are O atoms in the 
BO2 layer, the shaded circles are O atoms in the AO layer 
behind. AO and BO2 alternate. (a) The undistorted cubic struc- 
ture. (b) The distortion found when the A - -O  bonds are 
compressed and the B ~  bonds stretched (A too large, B too 
small). (c) The distortion found when the A - - O  bonds are 
stretched and the B ~  bonds compressed (A too small, B too 
large). 
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Fig. 9. The B ? ' - K )  bond lengths in a trigonally distorted BiO6 
octahedron as a function of the degree of distortion. The 
right-hand scale shows the lattice spacing in BiO layers formed 
from the octahedra [reprinted with permission from Brown 
(1991b)]. 
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in the lattice spacings of T10 and CuO2 layers as 
charge is transferred between the cations. In the 
superconductor Ba2YCu307, the strain is completely 
relieved by redistributing the charge between the two 
crystallographically distinct Cu atoms (Brown, 
1991a). 

(4) Buckling the compressed layers not only 
increases the bond length within the layer for a given 
lattice spacing, but distorts the environment of the 
cation in the adjacent stretched layer, both effects 
tending to reduce the strain index R I. 

(5) The introduction of appropriate interstitial 
atoms or vacancies may not only relieve the stress in 
the neighbourhood of the defect, but may make 
beneficial changes in the oxidation states of other 
cations. The last two effects are illustrated by La2- 
NiO4 discussed in §5.2.3. 

These mechanisms all help to relieve the stress but 
usually at some cost in energy which can have an 
important influence on the properties of the solid. 
The cost of distorting the structure can often be 
reduced if the distortions lead to favourable electro- 
nic configurations. 

4.4. Residual bond strain in crystals 

Steric distortions necessarily violate the equal- 
valence rule but, if the stress cannot be completely 
relaxed, the valence-sum rule may also be violated. 
At room temperature, R1 may be as high as 0.2 v.u. 
and at elevated temperatures even higher values can 
be found. The strain associated with this violation of 
the valence-sum rule is referred to as the residual 
bond strain. 

40 
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Tt I + 2Cu 

- , , , X T!  ÷2Cu TT 

3.5 40 
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Fig. 10. The lattice spacing of a TIO layer as a function of that for 
a CuO2 layer as charge is transferred from Cu to TI. The two 
layers become commensurate at a lattice spacing of 3.69 A with 
Cu in an oxidation state greater than 3 + (Brown, 1991b). 

In some isomorphous series of structures, certain 
sites are found to be consistently under- or overbon- 
ded (bond-valence sums too small or too large) 
indicating the presence of tensile or comprehensive 
bond strain respectively. Wagner & O'Keeffe (1988) 
have shown that the AI(2) site in fl-aluminas and 
magnetoplumbites is consistently underbonded (typi- 
cally 2.7 rather than 3.0 v.u.), an effect they attri- 
bute to the local influence of repulsion between the 
A1 atoms. Similar strains have been found in a 
number of other systems such as the melilite struc- 
tures (Armbruster, R6thlisberger & Seifert, 1990), 
the perovskite-related Bi3TiNbO9 (Thompson, Rae, 
Withers & Craig, 1991) and La2NiO4 (Brown, 
1991c). In all these studies, structures stable at room 
temperature had R1 < 0.20 v.u. Structures with RI > 
0.20 v.u. were found to be unstable and to relax in 
such a way as to reduce RI below 0.20 v.u.* 

Residual bond strain is indicated by experimental 
values of R1 that are too large to be attributed to 
experimental uncertainty and its presence can be 
expected to affect the physical properties of a crystal. 
In the copper oxide superconductors, the maximum 
superconducting transition temperature attainable by 
a particular structure appears to be related to the 
bond strain in the CuO2 layers, transition tempera- 
tures above 90 K being associated with tensile, and 
lower transition temperatures with compressive, 
strain (Brown, 1990). The most general phenomenon 
associated with bond strain is the soft-mode transi- 
tion, a phase transition that occurs when one of the 
vibrational modes of the crystal softens and freezes 
out, producing a distortion around an atom in tensile 
strain. As temperature is reduced in such materials, a 
sequence of collapsed structures appears each one 
having a lower symmetry and lower strain index than 
the one before. 

5. Modelling inorganic crystal structures 

5.1. Strategies for modelling 

The relative influences of chemical and steric con- 
straints are best understood when a crystal structure 
is generated from first principles. This section gives 
three examples of the use of the bond-valence model, 
illustrating the interplay of chemical and steric con- 
straints. The goal of modelling is to predict the 
structure and geometry of a compound and hence its 
crystal chemistry, starting with only its chemical 
formula and such chemical and crystallographic 
knowledge as is implicit in the bond-valence model. 
The procedure can usefully be divided into three 

* Although R1 never exceeds 0.20 v.u. in these three cases, there 
is no particular reason to assume that this limit will apply to all 
crystals. More work needs to be done to define the limiting value 
of R1 in crystals of different kinds. 
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steps, predicting the structure, i.e., determining the 
bond network, determining the ideal bond lengths 
from the network, and mapping the structure into 
three dimensions. 

The graph is constructed, as illustrated for 
Mg2CdC16.12H20 in §5.2.1, by arranging the atoms 
of the chemical formula in a list in decreasing order 
of their Lewis acid or base strength. Bonds are first 
formed between the strongest Lewis acid and the 
strongest base. This generates a complex to which a 
Lewis base (or acid) strength is assigned. The com- 
plex is then inserted back into the ordered list at the 
appropriate place and the process is repeated until all 
bonds stronger than 0.2 v.u. have been formed. 
Bonds weaker than 0.2 v.u. are sensitive to the steric 
requirements of crystal packing and are best identi- 
fied after the structure has been mapped into real 
space. One aid in constructing the bond graphs is the 
principle of maximum symmetry. At the stage where 
one knows only the chemical composition, all atoms 
of a given element are equivalent. As the graph is 
constructed, this equivalence is maintained as long as 
possible. This means that each cation will, as far as 
possible, form an equal number of bonds to every 
anion and vice versa. 

When this stage is completed, the structure is 
represented by a finite graph which may, depending 
on whether there are unassigned weak bonds, consist 
of one or more independent complexes (see Figs. 1 la 
and 13a for examples). If these complexes contain 
more than one bond between the same two atoms (as 
in Fig. 13a but not in Fig. l la), it is likely that the 
real-space structure will be infinitely connected, 
thereby defining one or more lattice translations. 
Some of the atoms in the bond graph will have 
identical connectivities and so will be graphically 
equivalent. Wherever possible such atoms will also 
be related by crystallographic symmetry. For 
example, the graph shown in Fig. 13(a) has two O 
atoms labelled O(1) that are graphically equivalent 
and which, in the parent structure of the solid, are 
related by crystallographic symmetry. In favourable 
cases, the bond graph is sufficient to determine both 
the unit cell and the space group as discussed in the 
examples below. 

Structures containing weak Lewis acids and bases 
may not, at this stage, be infinitely connected (see 
Fig. 1 l a). In such cases it is usually possible to treat 
a complex as a sphere (or some other simple shape) 
whose dimensions and symmetry can be predicted 
from the bond graph. For these compounds, the 
crystal structure is generated by considering the pos- 
sible packings of the complexes (Brown & Duhlev, 
1991). A valence-sum map (§3.6) may be useful in 
locating the sites occupied by alkali-metal atoms. 

Once the structure has been mapped into three 
dimensions and the bond graph is complete, the 

network equations can be used to predict ideal bond 
lengths (making corrections for any expected electro- 
nic distortions). These are used to refine the atomic 
coordinates using, for example, a distance least- 
squares program such as D L S  (Villiger, 1969). In 
most cases, the bond distances do not provide suffi- 
cient constraints to determine all the cell dimensions 
and atom coordinates, and non-bonded distances (or 
inter-bond angles) must also be supplied. Several 
methods of predicting non-bonding distances have 
been proposed, e.g.,  relating them to valences of 
neighbouring bonds (Brown, 1987), minimizing their 
electrostatic repulsion (Pannetier, Bassas-Alsina, 
Rodriguez-Carvajal & Caignaert, 1990), or mini- 
mizing a short-range repulsion function (O'Keeffe, 
1991). It is not yet clear which of these gives the best 
results, but the precise lengths are not critical since 
there are more than enough non-bonded distances 
and they are usually given low weight. This method 
can predict bond lengths to within 0.05 A providing 
electronic and steric distortions are not present. 

O'Keeffe (1991) has proposed an alternative 
approach in which the atomic coordinates are refined 
directly against the network equations. In this case, 
as with modelling by simulated annealing (Pannetier 
et al., 1990), explicit information about the strain is 
lost because the bond geometry is constrained to 
exist in three-dimensional space. While these 
approaches show promise for predicting structure, 
they cannot be used to explore the influence of steric 
constraints. 
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Fig. I I. The structure of Mg2CaCI6.12H20. (a) The bond graph. 

The numbers are the predicted bond valences. (b) Packing of the 
ions into layers. 
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Steric effects are necessarily present when the 
coordinate refinement is overdetermined, i.e., when 
the number of free parameters in the model is less 
than the number of constraints provided by the 
network equations. In such cases it is not possible to 
find a set of coordinates that will exactly reproduce 
all the predicted bond lengths (cf. the case of cubic 
BaTiO3, discussed in ~4.3, where there are two bond 
lengths to be fitted by only one free parameter, the 
unit-cell length). In these cases least-squares fitting to 
the ideal bond lengths does not reproduce the 
observed atomic coordinates and it is necessary to 
explore the different ways in which the structure can 
relax. Examples are given below for CaCrF5 (§5.2.2) 
and La2NiO4 (§5.2.3). 

5.2. Examples of modelling 

Three examples of modelling are given to illustrate 
the interplay of chemical and steric constraints. The 
first example, Mg2CaCI6.12H20, illustrates the way 
in which a bond graph is constructed to give two 
complexes which can be packed in different ways. 
The other two examples, CaCrFs and La2NiO4, have 
complete bond graphs and both can be mapped into 
three-dimensional tetragonal structures, but in 
neither case is the fit perfect. The highly strained 
tetragonal struture of CaCrF5 requires changes so 
large that they change the bond graph itself. The new 
bond graph, corresponding to a monoclinic struc- 
ture, gives good predictions of the bond lengths and 
hence the unit cell and atomic coordinates. The 
somewhat smaller stresses generated in tetragonal 
La2NiO4 can be relaxed by a variety of less drastic 
mechanisms, but these lead to an unusual crystal 
chemistry involving non-stoichiometry, oxidation of 
Ni, displacive phase transitions and residual bond 
strain. 

5.2.1. Mg2CaCI6.12H20. This compound illus- 
trates the sequence of steps needed to build the bond 
graph, and the way in which packing of discrete 
complexes can be used to determine the structure. 
The discussion follows that given by Brown & 
Duhlev (1991). 

An ordered list of Lewis acid and base strengths of 
the atoms in the chemical formula is shown as the 
first line in Table 3. 

At the second line bonds have been formed 
between H and O to form 12 water molecules. At the 
third line a complex has been formed by Mg. The 
choice of bonding Mg to H20 rather than C1 is 
determined by the preference of the harder cation 
(Mg 2+) for the harder ligand (H20) and the softer 
cation (Ca 2+) for the softer ligand (CI-)  (Balarew & 
Duhlev, 1984). At the fourth line the CaCI 4- com- 
plex ion has been formed. The graph building then 
ends since only bonds weaker than 0.2 v.u. are left to 

Table 3. Assembly of MgzCaCl6.12H20 into 
complexes 

A t  e a c h  s t a g e  in t h e  f o r m a t i o n  o f  t h e  b o n d  g r a p h  t h e  L e w i s  a c i d  

strength (positive) or the Lewis base strength (negative) of the 
complex is given. 

(1) 2 4 H '  1202 - 2Mg 2 * Ca z ÷ 6C1- 
0.83 - 0.50 0.33 0.27 - o. 17 

(2) Bond 24H to 120 to form 12H20 
2Mg 2 ÷ Ca 2' 12H20 6C1- 
0.33 0.27 0.17 -0.17 --0.17 

(3) Bond 2Mg to 12H20 to form 2Mg(H:O)~" 
Ca 2' 2Mg(H20)62" 6C1 
0.27 0.17 0.17 

(4) Bond Ca to 6CI to form CaCI64 
2Mg(H20)6 ~' CaCI~ 
0.17 0.17 

(5) All further bonds are weaker  than 0.2 v.u. and must be 
determined by crystal packing 

Cell constants  for space group R3 
Calculated Observed (Clark, Evans & Erd, 1980) 

a (A) 10.14 10.24 
c (/k) 17.32 17.12 

be formed. The graph contains three spherical com- 
plexes, two of Mg(H20)62+ and one of CaCI 4- (Fig. 
l la), whose effective radii have been shown by 
Brown & Duhlev (1991) to be 0.55 .A longer than the 
length of the metal-ligand bond. 

The cation complex thus has a radius of 2.65 A, 
the anion complex a radius of 3.26 A, which gives a 
radius ratio of 0.81, corresponding to a cation 
coordination number beween 8 and 12. There are 
no simple packing structures that give cation coordi- 
nation numbes as high as eight for a cation:anion 
ratio of 2:1. The highest possible cation coordination 
number is four which is found in the anti-fluorite 
structure observed, e.g., for Na20. An ordered 
hydrogen-bonded scheme is possible in this arrange- 
ment in space group F23 with a = 13.65 A and both 
ions on sites of 23 symmetry. Each cation has four 
anion nearest neighbours and six cation second- 
nearest neighbours only 15% further away. How- 
ever, more densely packed structures with eight 
mixed anion and cation nearest neighbours are pos- 
sible. The 2:1 stoichiometry lends itself to forming 
close-packed layers (Fig. l ib) which can stack in a 
two- or three-layer sequence in the space groups 
P31c and R3 respectively. Each complex lies on a 
threefold axis and is linked to its neighbour by an 
ordered hydrogen-bond array with each cation 
having, on average, four anion and four cation 
neighbours. The F23 structure has not been 
observed, but both the P31c and R3 structures are 
known for related compounds. [Mg(H20)6]zCaC16 
itself crystallizes with the R3 structure and the calcu- 
lated and observed cell constants are in good 
agreement (Table 3). The valence-sum rule applied at 
Mg and O requires the H--C1 bonds to have a 
valence of only 0.17 v.u., i.e., the atoms bonded to H 
require it to adopt the asymmetric configuration 
which best relieves the local steric stress. 
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This example shows that when the complex ions 
are linked only by weak bonds, several structures 
may be possible and frequently more than one is 
found. The problem yet to be tackled is to determine 
which will be the most stable. 

5.2.2. CaCrFs. CaCrF5 is an example of a com- 
pound whose bond graph maps into an excessively 
strained structure in which the stress can only be 
removed by rearranging the graph. 

J 

1:2 

The Lewis acid strengths of Cr 3÷ and Ca 2+ are 
0.50 and 0.274v.u. respectively, the Lewis base 
strength of F -  is 0.21 v.u. (S,,, = 0.5 v.u.). Cr will 
therefore form six bonds of 0.5 v.u. to F, requiring 
one of the F atoms to be bonded to two Cr atoms 
(left-hand side of Fig. 12b). 

The twice-bonded F(1) ensures that the CrF5 com- 
plex will be infinitely connected in one direction, and 
establishes one of the lattice translations as 2[Cr--  
F(1)] = 3.82 A. The polymeric CrFg- complex can 
form bonds with valences ranging from Sb = 0.5/3 = 
0.17 v.u. to S,,, = 0.5/1 = 0.50 v.u. since each non- 
bridging F has 0.5 v.u. of unused valence and may 
form from one to three additional bonds. With a 
Lewis acid strength of 0.27 v.u., Ca will be 7- or 
8-coordinate. Eight-coordinated Ca can form two 
bonds with each of the remaining four F atoms to 
give a graph in which all the C r - - F  bonds have 
lengths of 1.913 A (s = 0.50 v.u.) and all C a - - F  bond 
lengths of 2.357 A (s = 0.25 v.u.). Such a graph has 
fourfold symmetry around the Cr- -F-- -Cr  chain and 

(b) (c) 

Lo 

(o) 

(d) [001~o 

Fig. 12. The structure of CaCrFs. (a) The mapping of (b) into a 
tetragonal structure. (b) The initial bond graph (tetragonal) 
showing predicted bond valences. (c) The modified bond graph 
after the structure relaxes (monoclinic) showing predicted bond 
valences. (d) View of the tetragonal structure in the plane (110) 
perpendicular to the axis of rotation of the CaF6 octahedra. 
Plane circles are F, horizontally shaded circles are Cr and 
vertically shaded circles are Ca. (e) Same view as (d) after 
rotation (monoclinic structure). ( f )  View of the tetragonal 
structure down [010]. Regions where the F atoms overlap are 
shown with diagonal shading. + marks the position of Ca in 
adjacent layers. (g) Same view as ( f )  after shearing (monoclinic 
structure). 

(b) 

Fig. 13. The structure of La2NiO4. (a) The bond graph. All bonds 
have a predicted valence of 0.33 v.u. (b) Valence-sum density 
map for O in La2NiO4 calculated using equation (13) with n = 
16. Cavities too large for unstrained O atoms are shaded. 
Squares show the positions of O in the tetragonal structure, 
circles show their position in the Bmab structure, + show the 
position of the interstitial and x the relaxed positions of the O 
atoms adjacent to the interstitial. 
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around Ca, and can be mapped into a cell in the 
tetragonal space group P4/mmm (Fig. 12a) with the c 
axis determined by the length of the C r - - F - - C r  
bridge and the a axis by both the Ca- -F  and Cr- -F  
bond lengths (a = 4.648, c = 3.826 A). However, this 
brings F atoms in adjacent chains much too close 
(1.94 A, see the shaded region in Fig. 12f) and the 
structure has to relax. The first relaxation is a 
rotation of the linked CrF6 octahedra about an 
equatorial Cr - -F  bond to provide better packing in 
the tetragonal (110) plane (Fig. 12d to 12e). Because 
the octahedra are linked through the shared F(1) 
atom, alternate octahedra along the chain must 
rotate in opposite directions, doubling the c axis. The 
rotation stops when the F(2) atoms on adjacent 
octahedra along the chain are just in contact (2.8 A), 
but this is a large enough rotation to bring the 
bridging F(1) atom into the Ca coordination sphere. 
The second relaxation, a shearing along the c axis in 
the plane perpendicular to the rotation axis, is 
required to increase the very short F - - F  contacts 
(Fig. 12f to 12g). It removes two of the Ca--F(2) 
bonds, reducing the net Ca coordination from eight 
to seven when the new Ca--F(1) bond is included. In 
Table 4 the cell dimensions and bond lengths predic- 
ted from the new bond graph (Fig. 12c) are com- 
pared with those observed (Wu & Brown, 1973). 

The relaxed structure has monoclinic symmetry, 
space group C2/c with Cr on a center of symmetry 
and Ca and F(1) on a twofold axis. The monoclinic 
cell dimensions are given by am = x/sin(/3), bm= 
21/2at, Cm = 2Ct and /3 = cos-l(ct/x ) where x = [Cr-- 
F(3) + Ca--F(3)]. Noteworthy is the fact that the 
two Ca--F(2) bonds, which are equivalent in the 
bond graph but which are required by the rotation of 
the octahedra to be different (see Fig. 12e), have a 
mean length which is exactly equal to the ideal length 
predicted using the network equations. 

This structure illustrates how the effect of a large 
stress can result in a change in the bond graph, 
which allows for improved packing. The valence-sum 
rule is obeyed and, apart from small differences in 
the two graph-equivalent Ca--F(2) bonds, the strain 
is completely relaxed. 

5.2.3. LazNiO4. La2NiO4 is an example of a 
moderately strained structure that can be relaxed by 
several mechanisms, none of them drastic but none 
able to remove all the strain. The discussion follows 
that given by Brown (1991 c). 

La and Ni have Lewis acid strengths of 0.35 and 
0.34 v.u. respectively and both form an acceptable 
match with O (Sb = 0.5 v.u.). Ni is expected to be 6- 
coordinate and La 9-coordinate. The bond net- 
work (Fig. 13a) is generated using the principle of 
maximum symmetry by forming six bonds from Ni 
to the four O atoms (two bonded once and two 
bonded twice) and nine bonds from each La (two to 

Table 4. Calculated and observed distances (A) in 
CaCrF5 

Calcula ted  Observed  (Wu & Brown,  1973) 
Te t ragona l  s t ructure  P4/mmm 
a (A) 4.648 Not known 
c (A) 3.826 
Cr - -F  1.913 
Ca - -F  2.357 

Monocl in ic  s tructure C2/c 
a (A) 9.517 9.005 
b (A) 6.573 6.472 
c (A) 7.652 7.533 
/3 C) 118.3 115.8 
Cr--F(I )  1.989 1.940 
Cr--F(2) 1.927 1.918 
Cr--F(3) 1.839 1.848 
Ca--F(I )  2.476 2.495 
Ca--F(2) 2.342 2.291, 2.391 
Ca--F(3) 2.191 2.214 

R.m.s. deviation = 0.04 A [0.02 A taking the mean of Ca--F(2) bonds]. 

each of the four O atoms with an additional bond to 
one of the underbonded O atoms). The equivalence 
of the two La atoms in the formula is preserved, but 
the four O atoms are divided into two groups [O(1) 
and 0(2)] with different connectivities. 

This network exactly obeys both network equa- 
tions with all bonds having an ideal valence of 
0.33 v.u. corresponding to bond lengths of 2.57 and 
2.06 A for the La---O and Ni---O bonds respectively. 

The large number of atoms joined by two or more 
bonds in Fig. 13(a) ensures that the structure will be 
infinitely connected in all three directions. Although 
it is not immediately obvious, the bond graph can be 
mapped into a structure with fourfold symmetry: the 
Ni--O(2) and one of the La--O(2) bonds can be 
placed along a fourfold axis and all the other bonds 
around Ni, 0(2) and La occur four (or eight) times 
in the graph. The structure can be mapped via the 
square layers shown in Fig. 14(a), into a tetragonal 
cell in space group P4/mmm, giving five crystallo- 
graphically distinct bonds and four degrees of 
freedom {a, c, z(La) and z[O(2)]} (Fig. 14b). The 
symmetry of the graph is preserved in the symmetry 
of the crystal except that in the crystal the La--O(2) 
bond that lies along the fourfold axis is not symme- 
try related to the other four. 

This structure is necessarily strained since it is not 
possible to choose the four parameters to satisfy the 
all five predicted bond lengths. The ratio of the ideal 
La---O and Ni---O distances is 1.25, well below the 
1.41 required by the crystal geometry. Consequently 
the La---O bonds within the layers must be stretched 
and the Ni - -O bonds compressed leading to a 
breakdown of the valence-sum rule. The extent of 
this breakdown is indicated by R1 being equal to 
0.47 v.u., much larger than the 0.2 v.u. limit often 
found for room-temperature stable compounds. 

The first line of relaxation is to change the inter- 
layer spacing. In principle, R1 could be reduced to 
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zero by moving 0(2)0.5 A away from Ni towards 
La, but this produces an unacceptably large distor- 
tion around 0(2). In practice the relaxation stops 
when R1 = 0.27 v.u. leaving the Ni atom in a tetrag- 
onally distorted environment similar to that caused 
by the Jahn-Teller effect in Cu 2÷. In this relaxed 
structure, the NiO2 layers are still compressed and 
the LaO layers still in tension. Further relaxation can 
be provided by buckling the NiO2 layer which 
increases the Ni - -O  bond length and distorts the 
environment around La, both effects relieving the 
strain. Two forms of buckling are possible, leading 
to structures in the space groups, Bmab and P42/ncm 
(Aleksandrov, 1987). The Bmab distortion provides 
greater relief of the strain for a given degree of 
buckling, but it also creates a larger distortion of the 
environment around 0(2). Rotation of the NiO6 
octahedra by 6 ° reduces R1 to 0.20 but any further 
rotation again produces an unacceptably large dis- 
tortion at 0(2). This is the structure found at room 
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(a) 

temperature for La2NiO4 when prepared in vacuum. 
Further rotation of the octahedra can only occur in 
the P4Jncm structure which is observed below 
100 K. 

When La2NiO4 is annealed in the presence of 
oxygen, it can take up interstitial 0 2- since each 
interstitial 0 2- ion increases the average charge of 
the Ni atoms and helps to fill out the LaO layers in 
its neighbourhood. Possible sites for the interstitial 
can be found using the oxygen valence-sum density 
map shown in Fig. 13(b). Three crystallographically 
distinct peaks can be seen in the map. The largest 
(shaded) corresponds to the large cavity occupied by 
0(2) in the stretched LaO layer. The next peak, 
corresponding to the O(1) site in the NiO2 layer, is 
smaller than expected, consistent with the NiO2 
layers being compressed. The third and smallest peak 
lies between the two LaO layers and represents the 
best location for the interstitial O atom. 

The optimum relief of both the tensile and com- 
pressive stress occurs when there is one interstitial 
per five or six formula units. At this concentration 
the oxidation state of Ni just equals its valence sum 
(2.3 v.u.) and all parts of the LaO layer are close 
enough to an interstitial to have their stress relieved. 
Fig. 15(a) shows a possible superstructure for La2- 
NiO4.1v in which R1 -- 0.18 v.u. 

A different form of relaxation occurs in materials 
prepared with a La deficiency. Such compounds 
appear to contain LaO ÷ vacancies, allowing the LaO 
layers to stretch (Choisnet, Bassat, Pilliere & Odier, 
1988). A possible defect structure that satisfies the 
valence-sum rule is shown in Fig. 15(b). Thus either 
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Fig. 14. The structure of La2NiO4. La atoms are vertically cross 
hatched, Ni atoms diagonally cross hatched. (a) The mapping of 
the bond graph into layers. In order of increasing size the circles 
represent Ni, La and O. (b) The stacking of layers to form the 
tetragonal parent structure. 

Ca) ( b )  

Fig. 15. Models of the LaO layers in defect structures of La2NiO4. 
Squares are La, circles are O. (a) 3 x 2 superstructure incorpo- 
rating an interstitial O. The interstitial atom (shaded) lies 
between two LaO layers. (b) 5 x superstructure incorporating 
LaO vacancies. An La atom is missing from the layer shown 
and an O from the same position in the layer below. 
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adding interstitial 0 2- or introducing LaO ÷ 
vacancies can relieve the stress within the LaO layer 
and simultaneously increases the oxidation state of 
Ni, relieving the stress in the NiO2 layer as well. 

The model predicts that La-deficient La2NiO4 
should have an oxygen-deficient structure, and that 
material that is not La deficient will absorb about 0.2 
interstitial O atoms per formula unit. If prepared in 
the absence of oxygen, the stoichiometric tetragonal 
structure, stable at high temperature, will undergo a 
displacive transition to a structure in space group 
Bmab and possibly, at lower temperatures, to one in 
P42/ncm. 

La2NiO4 provides an excellent example of a com- 
pound in which the steric and chemical constraints 
are of equal importance. Relief of the steric stress is 
predicted to produce a tetragonal distortion in the 
environment of the Ni atom, to lead to an excess or 
deficiency of O in such a way as to stabilize Ni 3 +, or 
to lead to a displacive phase transition that will give 
irregular La coordination. Using the bond-valence 
model, all these properties can be deduced from the 
chemical formula alone. 

6. Concluding remarks 

This article has explored the-relationship between 
chemical and steric constraints in inorganic solids. 
The bond-valence model, which is described in some 
detail in §3, is an appropriate vehicle for such a 
study, as it allows the predicted bonding geometry of 
a compound to be compared with the geometries 
that are possible when the structure is mapped into 
three-dimensional space. 

Three regimes are identified. When the bonds are 
strong, strain is not possible. Strained structures do 
not exist and the bonding geometry corresponds to 
that predicted by the bond-valence model. When the 
bonds are weak, they are often strained to accommo- 
date the spatial requirements, but, because large 
strains correspond to only small changes in bond 
valence, the bond-valence rules are still obeyed. 
Between these two regimes is one where both chemi- 
cal and spatial constraints are important. Large 
strains can be expected, but only those whose devia- 
tion from the valence-sum rule corresponds to R1 
less than about 0.2 v.u. are stable at room tempera- 
ture. In other cases the stresses can be reduced by 
either large or small changes in the structure. In 
particular, they can lead to non-stoichiometry, col- 
lapsed structures with lower symmetry and stabili- 
zation of unusual oxidation states. Many of the 
interesting properties of inorganic solids (e.g., ferro- 
electricity and superconductivity) are related to steric 
strain. In particular, the tetragonal distortion found 
in the environment of the Ni atom in La2NiO4, the 
distortion that proved so perpelexing to those who 

carefully refined its structure, is seen to be a predic- 
table consequence of the compression to which the 
NiO2 layers are subject in order to be commensurate 
with the LaO layers. 

I wish to thank the Natural Science and Engi- 
neering Council of Canada for financial support and 
Drs Daniel Altermatt, Rumen Duhlev, Anna Sko- 
wron, Hannah Dabkowska and other coworkers for 
stimulating discussions. 
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Abstract 

A new type of tungsten oxide was synthesized from a 
mixture of W and WO3 by a solid-phase sintering 
method under high-pressure conditions. The crystal 
structure of the new oxide WO~.09 was investigated 
by selected-area electron diffraction and high- 
resolution transmission electron microscopy 
(HRTEM).  It has the following unit-cell parameters: 
a = 17.16, b = 10.32, c = 3.78 A, V = 669 ~3, Z = 44, 
p = 21 (3)g cm -3, and belongs to the space group 
Cmm2. The W positions were determined from 

0108-7681/92/050572-06506.00 

computer-processed HRTEM structure images. The 
R-factor minimization procedure was used to refine 
cationic sites; R '= 14.5%. It is shown that the crys- 
tal structure is formed by edge sharing WO3 octa- 
hedrally and tetrahedrally coordinated W cations. 

Introduction 

High-resolution transmission electron microscopy 
(HRTEM) provides a unique possibility of investi- 
gating the structure of very small crystal fragments 
of about several hundred ~ngstroms in size. This size 
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